Every 5 minutes, AEMO will dispatch generators across the National Electricity Market (NEM) in order to meet demand. To achieve this, AEMO needs to predict what demand will look like 5 minutes in the future.

Group 5146

Currently, AEMO uses the change in demand in the 6 dispatch intervals exactly a week before, and the 5 dispatch intervals immediately preceding the current dispatch interval. The outcome of these calculations is 9 values representing the change in demand over time.

blog

These 9 values are then fed into a machine learning algorithm called a neural network. I’ve drawn the structure of this network below, but all you really need to worry about is the input layer (that takes the 9 values discussed above) and the output layer that predicts the change in demand.

maps

If you’re interested in exactly how this neural network takes these inputs and is able to output a prediction, we’ve implemented it here from scratch in Python along with some example data for how this works.